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Extreme weather events: forecasting

and impacts to the power network
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Extreme weather events: forecasting

and impacts to the power network

Outage Prediction Model System Architecture

Event triggered
(tables from emailed
weather forecasts)

Weather Forecasts
Local forecasts based
on two models (5-
day lead time)

NWS operational NWP forecast products

NWP outputs cropped; parameter file
generated

- Static Data
Input file land use, LAI, infrastructure data

OPM Codes Run
(3 model forcings, 5 Output: Plots, Webpage
ML models) tables, maps displays
_ University of
Update with Actual Historical Clniiheat i
Outage Data

training data
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OBJECTIVE: Improve weather forecasting
, oYe functionality and uncertainty characterization

1. Bayesian regression peer-review publication in Journal of
Journal of Applied Meteorology and Climatology (Yang et al. 2017,
minor revision, JAMC).

2. Analog ensemble forecast: collaboration with NCAR-RAL
(Summer Advance Program Study at NCAR, PhD student Jaemo
Yang) (2 manuscripts in preparation).

3. Dynamic Ensemble Forecast; collaboration with NCAR-MMML
(on-going).

4. Real-time weather forecast from two state-of-the-art NWP
models.
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WIND SPEED Error Statistics
146 storms (2004-2016)
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146 storms (2004-2016)
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WIND SPEED Spatial Error Statistics
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Outage Prediction Modeling

Thunderstorm events - MODEL OPTIMIZATION Rainfwind events - OPTIMIZED MODEL
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Air quality: prediction, evaluation

and the way forward

RESEARCH OBJECTIVES

v'Analyze and interpret features embedded in
tropospheric ozone observations and model outputs
within a 21-year period (1990-2010)

v'Assess the model’s ability to reproduce the O,
changes as seen in observed concentrations

v'Can we develop confidence intervals for the
estimated design value?
w University of
Connecticut
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Air quality: prediction, evaluation

and the way forward

v" On-going collaboration with scientists from the Office of Research and
Development (ORD), National Exposure Research Laboratory (NERL) of the
EPA: Drs. C. Hogrefe and R. Mathur

v’ Project funded by the Electric Power Research Institute (EPRI)

Models and Data

v’ 21-years of coupled WRF-CMAQ simulations (1990-2010) over the USA
driven with internally consistent historic emission inventories and
boundary conditions derived from the hemispheric CMAQ model (Gan et
al. 2015; Xing et al. 2013)

v Observations of the summertime (May-September) daily maximum 8-hr
average (DMB8HR) ozone concentrations from U.S. EPA’s Air Quality System
(AQS) for the period 1990-2010 of
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Data Analysis

Spectral decombosition using the Kolmogorov-Zurbenko (KZ) filter (Zurbenko 1986;

Ozone(pph)

Eskridge et al.
on an iterative

DM8HR ozone
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AQS Stations across CONUS (#259)

(a) 1990-2010 (259 sites)
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Operational Evaluation (DM8HR)
1990-2010

R: 0.75; RMSE: 13.22
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Relationship between 4" highest O,

concentration and BLmean

(a) CONUS(259), OBS
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BLmean vs. #days>70ppb

What controls O, exceedances?
Correlations; NE U.S. for 1990-2010 (21-y)
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AQS stations in CT
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Greenwich
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Greenwich
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Middletown
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' Confidence intervals for Design Values

(preliminary results)

Design Value (3-y average of 4" highest DM8HR)
Mean of 21 DV = 2 std. dev. of 21 DV

Example:
xamp . . BLcwag 2010
Future year = 2010 Projected Baseline: BLy; ;2010 = BLops1995 *
Base year =1995 BLcmag 1995
Reconstruction of the ozone time-series: -

. th DV(2010),1=MEAN4th(2010,2009,2008)
0,(2010)_1 = BLproj(2010) + SYobs(1990) — 4™ (2010),1 DV(2010),2=MEAN4th(2010,2009,2008)

0,(2010)_2 = BLproj(2010) + SYobs(1991) — 4% (2010),2 | _

0,(2010)_21 = BLproj(2010) + SYobs(2010) — 4" (2010),21 DV(2010),21=MEAN4th(2010,2009,2008)

17/20 School of Engineering



Bounds for the Design Value

(3-year average 4t highest ozone conc)
10-year projection interval

Sites showing agreement/disagreement

Greenwich, CT
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ik confidence bounds

Red: Outside (possible due to 36-Km CMAQ

grids)
University of
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Bounds for the Design Value
(3-year average 4t highest ozone conc)
15-year projection interval

Sites showing agreement/disagreement

Greenwich, CT
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Few remarks on the air quality

modeling study

» Long-term simulations provide a unique opportunity to assess the
changes caused by emission reduction policies

» In general, the model underestimated the observed trends in most
regions, denoting a smaller pace in the ozone reduction than what the
observations are showing.

» There is a strong relationship between the baseline (long-term forcing)
and number of exceedances in both observations and model simulations

» Accurate prediction of changes in baseline O; coupled with observed
historic SY provide a robust estimate of the impact of emission controls.
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