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RESEARCH TOPICS

Extreme weather events: forecasting and 
impacts to  the power network

Air quality: prediction, evaluation and the 
way forward



Extreme weather events: forecasting 
and impacts to the power network

http://www.eversource.uconn.edu/



Weather Forecasts
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- NWS operational 
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OBJECTIVE: Improve weather forecasting 
functionality and uncertainty characterization

1. Bayesian regression peer-review publication in Journal of 
Journal of Applied Meteorology and Climatology (Yang et al. 2017, 
minor revision, JAMC).
2. Analog ensemble forecast: collaboration with NCAR-RAL 
(Summer Advance Program Study at NCAR, PhD student Jaemo 
Yang) (2 manuscripts in preparation).
3. Dynamic Ensemble Forecast; collaboration with NCAR-MMML 
(on-going).
4. Real-time weather forecast from two state-of-the-art NWP 
models.

http://cee-wrf.engr.uconn.edu/



RMSE

WIND SPEED Error Statistics

146 storms (2004-2016)
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Outage Prediction Modeling

Wanik et al. 2015, 2017; He et al. 2016



Analyze and interpret features embedded in 
tropospheric ozone observations and model outputs 
within a 21-year period (1990-2010)

Assess the model’s ability to reproduce the O3
changes as seen in observed concentrations 

Can we develop confidence intervals for the 
estimated design value?

RESEARCH OBJECTIVES

Air quality: prediction, evaluation 
and the way forward



 On-going collaboration with scientists from the Office of Research and 
Development (ORD), National Exposure Research Laboratory (NERL) of the 
EPA: Drs. C. Hogrefe and R. Mathur

 Project funded by the Electric Power Research Institute (EPRI)

Models and Data
 21-years of coupled WRF-CMAQ simulations (1990-2010) over the USA 

driven with internally consistent historic emission inventories and 
boundary conditions derived from the hemispheric CMAQ model (Gan et 
al. 2015; Xing et al. 2013)

 Observations of the summertime (May-September) daily maximum 8-hr 
average (DM8HR) ozone concentrations from U.S. EPA’s Air Quality System 
(AQS) for the period 1990-2010

Air quality: prediction, evaluation 
and the way forward



Data Analysis

Spectral decomposition using the Kolmogorov-Zurbenko (KZ) filter (Zurbenko 1986; 
Eskridge et al. 1997; Rao et al., 1997; Hogrefe et al. 2000; Porter et al. 2015). KZ is based 
on an iterative moving average that separates high frequency variations from the data. 

DM8HR ozone concentrations are decomposed into components: 
• short-term (synoptic reflecting weather-induced variation: SY) and 
• long-term (baseline reflecting seasonality, emissions loading, policy, and trend: BL)

Baseline (BL)=KZ5,5(O3) 
Synoptic Forcing (SY)=[O3-KZ5,5(O3)]



AQS Stations  across CONUS (#259)

Station selection: >80% coverage for 1990-2010



Operational Evaluation (DM8HR)
1990-2010

Astitha et al., 2017, in preparation (under review for EPA clearance)



Operational Evaluation



Relationship between 4th highest O3
concentration and BLmean

Strong linear correlation between 4th highest and BLmean: suggests that the 
long-term component controls the exceedances



What controls O3 exceedances?
Correlations; NE U.S. for 1990-2010 (21-y)

4th –4th highest; ex –# of days exceeding 70ppb;
BL – Baseline mean; SY – stdev of SY forcing

Model and observations show that the Baseline 
is the main driver for the O3 exceedances

BLmean vs. #days>70ppb SY vs. 4th



AQS stations in CT

Greenwich

Mcauliffe
Park

Conn. Valley 
hosp., 
Middletown
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Design Value (3-y average of 4th highest DM8HR)
Mean of 21 DV ± 2 std. dev. of 21 DV

Example: 
Future year = 2010
Base year    = 1995

Reconstruction of the ozone time-series:

O3(2010)_1 = BLproj(2010) + SYobs(1990)
O3(2010)_2 = BLproj(2010) + SYobs(1991)
…
O3(2010)_21 = BLproj(2010) + SYobs(2010)

4th (2010),1
4th (2010),2
…
4th (2010),21

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐁𝐁𝐁𝐁𝐁𝐁𝐏𝐏𝐁𝐁𝐁𝐁𝐁𝐁𝐏𝐏: 𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,2010 = 𝐵𝐵𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂,1995 �
𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2010

𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1995

17/20

DV(2010),1=MEAN4th(2010,2009,2008)
DV(2010),2=MEAN4th(2010,2009,2008)

…
DV(2010),21=MEAN4th(2010,2009,2008)

Confidence intervals for Design Values
(preliminary results)



Bounds for the Design Value 
(3-year average 4th highest ozone conc)

10-year projection interval

18/20

Greenwich, CT

2000-2010 projection
Green: Observed is within the estimated 
confidence bounds 
Red: Outside (possible due to 36-Km CMAQ 
grids)

Sites showing agreement/disagreement
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Bounds for the Design Value 
(3-year average 4th highest ozone conc)

15-year projection interval 

Sites showing agreement/disagreement

19/20

Greenwich, CT

1995-2010 projection
Green: Observed is within the estimated 
confidence bounds 
Red: Outside (possibly due to 36-Km CMAQ grids)

24



Few remarks on the air quality 
modeling study 

 Long-term simulations provide a unique opportunity to assess the 
changes caused by emission reduction policies 

 In general, the model underestimated the observed trends in most 
regions, denoting a smaller pace in the ozone reduction than what the 
observations are showing.

 There is a strong relationship between the baseline (long-term forcing) 
and number of exceedances in both observations and model simulations

 Accurate prediction of changes in baseline O3 coupled with observed 
historic SY provide a robust estimate of the impact of emission controls. 
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